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Nonconvex Optimization

• A generic optimization problem aims to solve minx∈D f(x).

• Nonconvex optimization is much more difficult than its convex counterpart.

Figure: convex v.s. nonconvex optimizations1

1source: https://stanford.edu/~pilanci/papers/TALK_Sketching.pdf
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Classification of Stationary Points

• First-order stationary point: ∇f(x) = 0.
• Second-order stationary point: ∇f(x) = 0, and ∇2f(x) ⪰ 0.
• Approximate second-order stationary point: ∥∇f(x)∥ ≤ εg, λmin

(
∇2f(x)

)
≥ −εH .

Figure: stationary points2

2source:
https://pythoninchemistry.org/ch40208/comp_chem_methods/geometry_optimisation.html
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Nonconvex Optimization in ML: ERM Framework

• Provided with the training dataset S = {(xi, yi)}ni=1 where (xi, yi)
iid∼ D, the

empirical risk minimization (ERM) aims to solve

min
θ∈Θ

Ln(θ) =
1

n

n∑
i=1

ℓ(yi, fθ(xi)) + λR(θ).

• Let Θ⋆ = argminθ∈Θ L(θ) = E [Ln(θ)] be the set of all the ground truths.
The challenging question is:

For a finite sample size n, can we find a θ̂n from solving the nonconvex
optimization minθ∈Θ Ln(θ) such that θ̂n is close to Θ⋆?
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Difficulty of ERM

The fundamental question is:

For a finite sample size n, can we find a θ̂n from solving the nonconvex
optimization minθ∈Θ Ln(θ) such that θ̂n is close to Θ⋆?

Three difficulties:

• Optimization: The optimization problem minθ∈Θ Ln(θ) is highly nonconvex and
can be nonsmooth.

• Generalization: A good solution of Ln(θ) can be far away from Θ⋆ provided with
limited data (overfitting).

• Sample complexity: How many samples are sufficient to find a solution close to
the ground truth (e.g., d v.s. d100)?
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Empirical Success of Nonconvex Optimization in DL

Observation

Deep learning has achieved empirical success in many fields, such as computer vision,
natural language processing, and robotics. The underlying mechanism is to solve a highly
nonconvex optimization via first-order methods, like Adam, SGD.

(a) object detection (b) AlphaFold (c) GAN

8 / 53



General Nonconvex Optimization is Hard

However...

Fact

Solving nonconvex optimization is hard in the worst case. Sepcifically, finding a global
solution is NP-hard.

• For local search algorithms, only local guarantees are available, i.e., converging to
first/second-order stationary points [JGN+17].

• GD can take exponential time to escape saddle points [DJL+17].

• SGD can converge to local maxima [ZLSU21].

• Simple GD-like algorithm has a worse convergence rate for nonsmooth functions
[B+15].
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Structured Nonconvex Optimization

Question: How to close this gap between theory and practice?

Hypothesis

If the function class has some special structures like convexity, then the optimization
should be easy!

• Weak convexity.

• Polyak- Lojasiewicz (PL) condition.

• Restricted (strong) convexity.

• Benign landscape, i.e., no spurious local minima, strict saddle property.

• ...
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Landscape Analysis

Hypothesis

Though it is nonconvex, the global landscape might enjoy some benign landscape
properties so that local-search algorithms find ground truth.

Strict Saddle (Optimization, [JGN+17])

For any θ ∈ Θ, at least one of following holds

• ∥∇Ln(θ)∥ ≥ εg;

• λmin(∇2Ln(θ)) ≤ −εH ;

• θ is ε-close to Θ⋆ — the set of local minima.

Implication: first-order algorithms escape saddle points and converge to local minima.
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How to Escape Saddle Points Efficiently? [JGN+17]

• When gradient norm is large, i.e., ∥∇Ln(θt)∥ ≥ εg, we apply gradient descent lemma

Ln(θt+1)− Ln(θt) ≤ −η

2
∥∇Ln(θt)∥2 ≤ −η

2
ε2g. (1)

• When θt is close to a saddle point, i.e., ∥∇Ln(θt)∥ ≤ εg, running perturbed GD is
similar to one-step Hessian update θt+1 = θt − ηHv where v is the eigenvector of
λmin(∇2Ln(θt)). We have

Ln(θt+1)− Ln(θt) ≤ ηH ⟨∇Ln(θt), v⟩+
1

2
η2Hv⊤∇2Ln(θt)v +O(η3H)

≤ ηHεg −
1

2
η2Hγ +O(η3H)

≤ −1

4
η2Hγ.

(2)
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Benign Landscape (cont’d)

No Spurious Local Minimum (Statistics) [GLM16]

All the local minima are global.

Implication: local-search algorithms find the global minimum.

Identifiability [MF23]

The ground truth θ⋆ ∈ Θ⋆ is identifiable if it is a stationary point of Ln(θ).

Implication: local-search algorithms could find ground truth. Furthermore, if it
corresponds to a global minimum, then local-search algorithms find ground truth.
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Examples of Benign Landscape

Example:

• Matrix sensing [PKCS17].

• Matrix completion [GLM16, GJZ17].

• Deep linear neural network [Kaw16].

• Two hidden unit ReLU network
[WLL18].

• ...

Implication: local-search algorithms work.
Figure: landscape of phase retrieval [SQW15]
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Trajectory Analysis

Hypothesis

Even if the global landscape can be bad, the landscape of the solution trajectory might
enjoy good properties, and algorithms have implicit biases towards the ground truth.

• Pros: This is nearly the minimal requirement for a local-search algorithm to succeed!

• Cons: How to prove it?
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Examples of Trajectory Analysis

Example:

• Overparameterized sparse
recovery [VKR19].

• Overparameterized matrix
factorization
[LMZ18, SS21].

• Deep linear neural network
[ACGH18].

• ...
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Takeaway Message

There exists an instance of statistical learning problems (robust matrix sensing) such that
with high probability:

1. GD can find a ground truth θ⋆GD ∈ Θ⋆ [MF22].

2. All the elements in Θ⋆ are saddle points of Ln(θ) [MF23].

Discussion
• Saddle-avoiding algorithms fail in this case.

• Landscape analysis has fundamental limits, so we must develop sophisticated
trajectory analysis in the general case!

18 / 53



Robust Matrix Sensing

Problem (Robust Matrix Sensing)

The robust matrix sensing problem aims to

find X⋆ subject to: y = A(X⋆) + s, rank(X⋆) = r⋆.

• Low-rank ground truth: X⋆ ∈ Rd×d is PSD and r⋆ ≪ d.

• Gaussian measurement matrices: A(·) = [⟨A1, ·⟩ , · · · , ⟨An, ·⟩]⊤ where
A1, · · · , An ∈ Rd×d are i.i.d. standard Gaussian matrices.

• Huber’s contamination model: ⌈pn⌉ of measurements are corrupted by outliers s
i.i.d. drawn from some unknown distribution Doutlier with 0 < p < 1.
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Nonconvex Optimization Formulation

Optimization

We solve the following optimization problem

min
U∈Rd×r′

Ln(U) :=
1

n

∥∥∥y −A
(
UU⊤

)∥∥∥
1
=

1

n

n∑
i=1

∣∣∣yi − 〈
Ai, UU⊤

〉∣∣∣ . (3)

Here r⋆ ≤ r′ ≤ d is the search rank.

• Why nonconvex optimization? Traditional convex relaxation methods do not scale
well.

• Why ℓ1-loss? To promote robustness.

• Why overparameterized model? In practice, it is nontrivial to estimate the true
rank r⋆. UU⊤ enforces PSD naturally.
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Ground Truths are Saddles

Theorem (Informal)

Suppose the sample size n ≲ dr′, the corruption probability 0 < p < 1, and the radius
γ ≤ 1/ poly(d). Then, with high probability, for any U⋆ such that U⋆U⋆⊤ = X⋆, we have

min
∥∆U∥F≤γ

Ln(U
⋆ +∆U)− Ln(U

⋆) = −Θ(γ2). (4)

• Information lower bound: n = Θ(dr⋆).

• First-order stationary point: Let the radius γ → 0, we have

lim
γ→0

sup
∥∆U∥F≤γ

|Ln(U
⋆ +∆U)− Ln(U

⋆)|
∥∆U∥F

= lim
γ→0

Θ(γ) = 0.
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GD Finds Ground Truth Efficiently

Theorem (informal)

Suppose the sample size n ≳ dr⋆2 and the corruption probability 0 < p < 1. For arbitrary
accuracy ε > 0, we use GD with a proper learning rate regime and initialization. Then,
with high probability, we have ∥∥∥UTU

⊤
T −X⋆

∥∥∥
F
≤ ε, (5)

after T = O
(
κ2 log3(d/ε)

)
iterations.

• Exact recovery: We can set ε sufficiently small.

• Near optimal sample complexity: dr⋆2 v.s. dr⋆ where r⋆ ≪ d.

• Near linear convergence: Our iteration complexity has polylog dependence with ε.
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Local Perturbation Analysis

Theorem

Suppose the sample size n ≲ dr′, the corruption probability 0 < p < 1, and the radius
γ ≤ 1/ poly(d). Then, with high probability, for any U⋆ such that U⋆U⋆⊤ = X⋆, we have

min
∥∆U∥F≤γ

Ln(U
⋆ +∆U)− Ln(U

⋆) = −Θ(γ2).

Comments:

• For simplicity, we only focus on the upper bound and set r′ = d.
• Not so easy...

• Cannot use first-order approximation.
• Cannot use common concentration bounds for independent random variables.
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Local Perturbation Analysis (cont’d)

The difference can be written as

Ln(U
⋆ +∆U)− Ln(U

⋆) =
1

n

∑
i∈I

|⟨Ai,∆X⟩|+ 1

n

∑
i∈O

(|⟨Ai,∆X⟩ − si| − |si|) . (6)

Notations.

• Suppose U⋆ satisfies U⋆U⋆⊤ = X⋆.

• Denote ∆X = (U⋆ +∆U)(U⋆ +∆U)⊤ − U⋆U⋆⊤.

• yi −
〈
Ai, UU⊤〉 =

〈
Ai, X

⋆ − UU⊤〉+ si.

• [n] = I ∪O (inliers and outliers) such that si = 0, ∀i ∈ I.

Main Idea: Construct a specific perturbation ∆U to minimize the above difference.
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Structured Perturbation

Observation:
∆X = ∆UU⋆⊤ + U⋆∆U⊤︸ ︷︷ ︸

first-order term, rank-r

+ ∆U∆U⊤︸ ︷︷ ︸
second-order term

. (7)

Step 1. Cancel out the first-order term by restricting the perturbation such that
∆UU⋆⊤ = 0. Hence,

Ln(U
⋆ +∆U)− Ln(U

⋆) =
1

n

∑
i∈I

∣∣∣〈Ai,∆U∆U⊤
〉∣∣∣+ 1

n

∑
i∈O

(∣∣∣〈Ai,∆U∆U⊤
〉
− si

∣∣∣− |si|
)
.

(8)
Dimension of perturbation space: d2 → d(d− r⋆) = Ω(d2).

26 / 53



Structured Perturbation (cont’d)

Step 2. For sufficiently small perturbation radius γ, with high probability, we have
Sign(si −

〈
Ai,∆U∆U⊤〉) = Sign(si). Hence, we further have

Ln(U
⋆ +∆U)− Ln(U

⋆) =
1

n

∑
i∈I

∣∣∣〈Ai,∆U∆U⊤
〉∣∣∣+ 1

n

∑
i∈O

Sign(si)
〈
Ai,∆U∆U⊤

〉
︸ ︷︷ ︸

Gaussian process

.

Step 3. Choose ∆U = argmin∥∆U∥F≤γ
1
n

∑
i∈O Sign(si)

〈
Ai,∆U∆U⊤〉.
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Structured Perturbation (cont’d)

• Our choice of ∆U is independent of Ai, ∀i ∈ I so that

1

n

∑
i∈I

∣∣∣〈Ai,∆U∆U⊤
〉∣∣∣ ≈ (1− p)E

[∣∣∣〈Ai,∆U∆U⊤
〉∣∣∣]

=
√

2/π(1− p)
∥∥∥∆U∆U⊤

∥∥∥
F
.

(9)

• Applying Sudakov inequality, we have

1

n

∑
i∈O

Sign(si)
〈
Ai,∆U∆U⊤

〉
≲ −

√
p dim(∆U)

n

∥∥∥∆U∆U⊤
∥∥∥
F

≲ −
√

pd2

n

∥∥∥∆U∆U⊤
∥∥∥
F
.

(10)
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Supremum of Gaussian Process3

Definition (Gaussian process)

A random process {Xt}t∈T is called a Gaussian process if, for any finite subset T0 ⊂ T ,
the random vector {Xt}t∈T0 has a normal distribution.

Lemma (Sudakov’s minoration inequality, informal)

For a centered Gaussian process {Xt}t∈T with variance proxy σ2 = inft∈T E[X2
t ], we have

E
[
sup
t∈T

Xt

]
≳ σ

√
dim(T ).

3Reference: https://www.bilibili.com/video/BV1CU4y1h7Ao/?spm_id_from=333.999.0.0&vd_
source=e0e131166191f0238a27cd7bf5ad57a3
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Algorithm

• Optimization formulation:

min
U∈Rd×r′

L(U) :=
1

n

∥∥∥y −A
(
UU⊤

)∥∥∥
1
, (11)

• Algorithm: GD with geometric stepsize Ut+1 = Ut − ηρtDt where

Dt ∈ ∂L(Ut) =
1

n

n∑
i=1

Sign
(
⟨Ai, UtU

⊤
t −X⋆⟩

)(
Ai +A⊤

i

)
Ut.

• Initialization: small (spectral) initialization U0 = αB, where BB⊤ is the robust
analog of spectral initialization, satisfying BB⊤ ≈ X⋆.
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Emergence of “spurious” global minima

• Better objective value ⇏ better generalization error.
• Plain landscape analysis fails! ⇒ trajectory analysis!

(a) (b)
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GD is Agnostic to Over-parameterization

• The dimension d = 20, the rank r⋆ = 3, sample size n = 300, and the corruption
probability p = 0.1. For each choice, we run 5 independent trials.
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GD is Robust against Outlier

• The same setting as the last slide. The search rank is set to be r′ = 20.
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Effect of Small Initialization

• The error is proportional to the initialization scale:
∥∥UU⊤ −X⋆

∥∥
F
∝ αγ .

• In practice, we can choose α = ε1/γ to make
∥∥UU⊤ −X⋆

∥∥
F
≲ ε.
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Successful in Gaussian Noise Model
• The performance of ℓ1-loss is comparable with ℓ2-loss, which is minimax optimal.

• We have information lower bound
∥∥UU⊤ −X⋆

∥∥
F
≳

√
dr⋆

n .
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Proof Sketch
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Matrix Factorization (n → ∞)

We start with the population loss (n → ∞) and noiseless setting (p = 0).

Overparameterized Matrix Factorization (ℓ1-loss)

Suppose the measurement matrices are standard Gaussian, and the noise vector is zero.
When the measurement number n → ∞, the objective function becomes

min
U∈Rd×r′

L̄(U) :=

√
2

π

∥∥∥UU⊤ −X⋆
∥∥∥
F
.
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Equivalence between ℓ1- and ℓ2-loss

Observation

Using GD to solve

min
U∈Rd×r′

L̄(U) :=
1

2

∥∥∥UU⊤ −X⋆
∥∥∥
F

with stepsize η̄t = η0

∥∥∥UtU
⊤
t −X⋆

∥∥∥
F

is equivalent to using GD to solve

min
U∈Rd×r′

1

4

∥∥∥UU⊤ −X⋆
∥∥∥2
F

with stepsize η̄t = η0.

Intuition: solving ℓ2-loss via constant stepsize GD might be easy to analyze
[LMZ18, ZKHC21, SS21].
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Signal-Residual Decomposition
• X⋆ = V ΣV ⊤, where Σ = Diag{σ1, · · · , σr⋆}.
• Signal-Residual Decomposition: We project the matrix Ut onto the column space

of V , and its orthogonal complement V ⊥ (recall that X⋆ = V ΣV ⊤)

Ut = V St + V⊥Et, where St = V ⊤Ut︸ ︷︷ ︸
rank-r⋆

, Et = V ⊤
⊥ Ut︸ ︷︷ ︸

dense, but small???

.

Lemma (Signal-Residual Decomposition)

The generalization error can be decomposed as

UtU
⊤
t −X⋆ = V

(
StS

⊤
t − Σ

)
V ⊤ + V StE

⊤
t V

⊤
⊥ + V⊥EtS

⊤
t V

⊤︸ ︷︷ ︸
rank-3r⋆

+V⊥EtE
⊤
t V

⊤
⊥︸ ︷︷ ︸

small???

,

∥∥∥UtU
⊤
t −X⋆

∥∥∥ ≤
∥∥∥Σ− StS

⊤
t

∥∥∥︸ ︷︷ ︸
signal

+2
∥∥∥StE

⊤
t

∥∥∥︸ ︷︷ ︸
cross

+
∥∥∥EtE

⊤
t

∥∥∥︸ ︷︷ ︸
residual

.
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Signal-Residual Decomposition (cont’d)
• The projected signal term StS

⊤
t satisfies a local regularity condition (an analog of

strong convexity) so that it converges linearly to the projected ground truth.
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Robust Matrix Sensing: Noiseless Case

• Recall that in the population case, we can choose the stepsize
η̄t = η0

∥∥UU⊤ −X⋆
∥∥
F

.

• In the noiseless case, we can choose ηt = η0
1
n

∑n
i=1 |yi −

〈
Ai, UtU

⊤
t

〉
|, which is a

good approximation of η̄t up to some constant, i.e., ηt ≍ η̄t.

• Question 1: Is the sub-differential ∂L(U) close to ∂L̄(U)?

• Question 2: Does the trajectory U0, · · · , UT have similar behavior as that
corresponds to the population loss provided an affirmative answer to Question 1?
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Uniform Convergence of Sub-differential

Theorem (Uniform convergence of sub-differential)

For standard Gaussian matrices, suppose the measurement number n = Ω̃(dr⋆). Then
with high probability, for arbitrary ε-approximate rank-O(r⋆) matrix U , we have∥∥∂L(U)− ∂L̄(U)

∥∥ ≲ ∥U∥ δ.

Here ε, δ are small numbers depending only on m, d, r⋆.

Remark:

• Uniform result holds for all approximate low-rank matrices simultaneously.

• It holds for both outlier and Gaussian noise models.

• Highly nontrivial since sub-differential is discontinuous.
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Decomposed Dynamics on Matrix Sensing

• Large
∥∥EtE

⊤
t

∥∥ =⇒ Further decomposition!
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Decomposed Residual Dynamics

• Project the residual onto St and its orthogonal complement:

Ft := EtPSt︸ ︷︷ ︸
rank-r⋆

, Gt := EtP
⊥
St︸ ︷︷ ︸

dense, but small???

,where PSt ,P⊥
St

are projection operators.

• We can decompose the generalization error as

UtU
⊤
t −X⋆

= V
(
StS

⊤
t − Σ

)
V ⊤ + V StE

⊤
t V

⊤
⊥ + V⊥EtS

⊤
t V

⊤ + V⊥FtF
⊤
t V ⊤

⊥︸ ︷︷ ︸
rank-4r⋆

+V⊥GtG
⊤
t V

⊤
⊥︸ ︷︷ ︸

small norm???

.

• We have
∥∥EtE

⊤
t

∥∥ ≤
∥∥FtF

⊤
t

∥∥+
∥∥GtG

⊤
t

∥∥.
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Decomposed Residual Dynamics(cont’d)
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Robust Matrix Sensing: Noisy Case

• In the existence of noise, ηt = η0
1
n

∑n
i=1 |

〈
Ai, X

⋆ − UtU
⊤
t

〉
+ si| is no longer a good

approximation of η̄t = η0
∥∥UtU

⊤
t −X⋆

∥∥
F

.

• Instead, we use exponentially decayed stepsize ηt = η0ρ
t.

• Intuition: If the algorithm works as expected, the error measure decreases linearly,
i.e.,

∥∥UtU
⊤
t −X⋆

∥∥
F
≍ ρt. Hence, ηt = η0ρ

t ≈ η0
∥∥UtU

⊤
t −X⋆

∥∥
F
= η̄t.
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Summary

There exists an instance of statistical learning problems (robust matrix sensing) such that
with high probability:

1. GD can find a ground truth θ⋆GD ∈ Θ⋆.

2. All the elements in Θ⋆ are saddle points of Ln(θ).
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